56 research outputs found

    Classification of interstitial lung disease patterns with topological texture features

    Full text link
    Topological texture features were compared in their ability to classify morphological patterns known as 'honeycombing' that are considered indicative for the presence of fibrotic interstitial lung diseases in high-resolution computed tomography (HRCT) images. For 14 patients with known occurrence of honey-combing, a stack of 70 axial, lung kernel reconstructed images were acquired from HRCT chest exams. A set of 241 regions of interest of both healthy and pathological (89) lung tissue were identified by an experienced radiologist. Texture features were extracted using six properties calculated from gray-level co-occurrence matrices (GLCM), Minkowski Dimensions (MDs), and three Minkowski Functionals (MFs, e.g. MF.euler). A k-nearest-neighbor (k-NN) classifier and a Multilayer Radial Basis Functions Network (RBFN) were optimized in a 10-fold cross-validation for each texture vector, and the classification accuracy was calculated on independent test sets as a quantitative measure of automated tissue characterization. A Wilcoxon signed-rank test was used to compare two accuracy distributions and the significance thresholds were adjusted for multiple comparisons by the Bonferroni correction. The best classification results were obtained by the MF features, which performed significantly better than all the standard GLCM and MD features (p < 0.005) for both classifiers. The highest accuracy was found for MF.euler (97.5%, 96.6%; for the k-NN and RBFN classifier, respectively). The best standard texture features were the GLCM features 'homogeneity' (91.8%, 87.2%) and 'absolute value' (90.2%, 88.5%). The results indicate that advanced topological texture features can provide superior classification performance in computer-assisted diagnosis of interstitial lung diseases when compared to standard texture analysis methods.Comment: 8 pages, 5 figures, Proceedings SPIE Medical Imaging 201

    Model-free functional MRI analysis based on unsupervised clustering

    Get PDF
    AbstractConventional model-based or statistical analysis methods for functional MRI (fMRI) are easy to implement, and are effective in analyzing data with simple paradigms. However, they are not applicable in situations in which patterns of neural response are complicated and when fMRI response is unknown. In this paper the “neural gas” network is adapted and rigourosly studied for analyzing fMRI data. The algorithm supports spatial connectivity aiding in the identification of activation sites in functional brain imaging. A comparison of this new method with Kohonen’s self-organizing map and with a fuzzy clustering scheme based on deterministic annealing is done in a systematic fMRI study showing comparative quantitative evaluations. The most important findings in this paper are: (1) both “neural gas” and the fuzzy clustering technique outperform Kohonen’s map in terms of identifying signal components with high correlation to the fMRI stimulus, (2) the “neural gas” outperforms the two other methods with respect to the quantization error, and (3) Kohonen’s map outperforms the two other methods in terms of computational expense. The applicability of the new algorithm is demonstrated on experimental data

    Alteration of brain network topology in HIV-associated neurocognitive disorder: A novel functional connectivity perspective

    Get PDF
    HIV is capable of invading the brain soon after seroconversion. This ultimately can lead to deficits in multiple cognitive domains commonly referred to as HIV-associated neurocognitive disorders (HAND). Clinical diagnosis of such deficits requires detailed neuropsychological assessment but clinical signs may be difficult to detect during asymptomatic injury of the central nervous system (CNS). Therefore neuroimaging biomarkers are of particular interest in HAND. In this study, we constructed brain connectivity profiles of 40 subjects (20 HIV positive subjects and 20 age-matched seronegative controls) using two different methods: a non-linear mutual connectivity analysis approach and a conventional method based on Pearson's correlation. These profiles were then summarized using graph-theoretic methods characterizing their topological network properties. Standard clinical and laboratory assessments were performed and a battery of neuropsychological (NP) tests was administered for all participating subjects. Based on NP testing, 14 of the seropositive subjects exhibited mild neurologic impairment. Subsequently, we analyzed associations between the network derived measures and neuropsychological assessment scores as well as common clinical laboratory plasma markers (CD4 cell count, HIV RNA) after adjusting for age and gender. Mutual connectivity analysis derived graph-theoretic measures, Modularity and Small Worldness, were significantly (p < 0.05, FDR adjusted) associated with the Executive as well as Overall z-score of NP performance. In contrast, network measures derived from conventional correlation-based connectivity did not yield any significant results. Thus, changes in connectivity can be captured using advanced time-series analysis techniques. The demonstrated associations between imaging-derived graph-theoretic properties of brain networks with neuropsychological performance, provides opportunities to further investigate the evolution of HAND in larger, longitudinal studies. Our analysis approach, involving non-linear time-series analysis in conjunction with graph theory, is promising and it may prove to be useful not only in HAND but also in other neurodegenerative disorders

    Monthly intravenous methylprednisolone in relapsing-remitting multiple sclerosis - reduction of enhancing lesions, T2 lesion volume and plasma prolactin concentrations

    Get PDF
    BACKGROUND: Intravenous methylprednisolone (IV-MP) is an established treatment for multiple sclerosis (MS) relapses, accompanied by rapid, though transient reduction of gadolinium enhancing (Gd+) lesions on brain MRI. Intermittent IV-MP, alone or with immunomodulators, has been suggested but insufficiently studied as a strategy to prevent relapses. METHODS: In an open, single-cross-over study, nine patients with relapsing-remitting MS (RR-MS) underwent cranial Gd-MRI once monthly for twelve months. From month six on, they received a single i.v.-infusion of 500 mg methylprednisolone (and oral tapering for three days) after the MRI. Primary outcome measure was the mean number of Gd+ lesions during treatment vs. baseline periods; T2 lesion volume and monthly plasma concentrations of cortisol, ACTH and prolactin were secondary outcome measures. Safety was assessed clinically, by routine laboratory and bone mineral density measurements. Soluble immune parameters (sTNF-RI, sTNF-RII, IL1-ra and sVCAM-1) and neuroendocrine tests (ACTH test, combined dexamethasone/CRH test) were additionally analyzed. RESULTS: Comparing treatment to baseline periods, the number of Gd+ lesions/scan was reduced in eight of the nine patients, by a median of 43.8% (p = 0.013, Wilcoxon). In comparison, a pooled dataset of 83 untreated RR-MS patients from several studies, selected by the same clinical and MRI criteria, showed a non-significant decrease by a median of 14% (p = 0.32). T2 lesion volume decreased by 21% during treatment (p = 0.001). Monthly plasma prolactin showed a parallel decline (p = 0.027), with significant cross-correlation with the number of Gd+ lesions. Other hormones and immune system variables were unchanged, as were ACTH test and dexamethasone-CRH test. Treatment was well tolerated; routine laboratory and bone mineral density were unchanged. CONCLUSION: Monthly IV-MP reduces inflammatory activity and T2 lesion volume in RR-MS
    • …
    corecore